How to work out 1 1/5 divided by 3/4 as a mixed number
Dividing fractions can be tricky, especially when mixed numbers are involved. In this article, we'll learn how to divide 1 1/5 by 3/4. Understanding how to convert mixed numbers into improper fractions makes division more straightforward.
Importance of converting 1 1/5 to an improper fraction for easier division
Before performing the division, it’s essential to convert the mixed number 1 1/5 into an improper fraction. This step allows us to handle the division more effectively and avoid any complications.
Conversion of the mixed number:
1 1/5 = {(1 x 5) + 1}/5 = 6/5
Steps to divide the improper fraction by 3/4
We can proceed with the division once we have converted the mixed number. The rule for dividing fractions states that you should invert the second fraction (the divisor) and multiply.
-
Write the problem with the improper fraction:
6/5 ÷ 3/4 -
Invert the divisor:
6/5 x 4/3 -
Multiply the fractions:
(6 x 4)/(5 x 3) = 24/15
Methods to simplify the resulting fraction to its simplest form
Now, let's simplify 24/15. To do this, we can find the greatest common divisor (GCD) of the numerator and denominator.
-
Find the GCD of 24 and 15:
-
The GCD is 3.
-
Divide both the numerator and denominator by the GCD:
(24÷3)/(15÷3) = 8/5 -
Convert back to a mixed number if desired:
8/5 = 1 and 3/5
To learn more about the greatest common divisor (GCD), check out: What is the difference between LCM and HCF.
Conclusion
In summary, to solve 1 1/5 ÷ 3/4 , we first converted the mixed number to an improper fraction, inverted the divisor, and multiplied. The final simplified result is 1 and 3/5. Mastering these steps will enhance your ability to work with fractions efficiently.
You may also be interested in: